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The problem of modelling the motion of a force disturbance in an elastic medium that is heterogeneous over its depth is 
investigated. It is in an antiplane formulation in a moving system of coordinates that all possible versions of the ratio of the velocity 
of motion of the surface point shear load to the velocities of the shear waves in the layers of the two-layer elastic base are examined. 
Cases of a subsonic regime (SBR) in the upper and lower layers, of a supersonic regime (SPR) in the upper layer and an SBR 
in the lower layer, and of an .SBR in the upper layer and an SPR in the lower layer are studied using the Fourier transform and 
the theory of residues. The last two cases are extremely interesting from the mathematical point of view, as here, on the boundary 
between the layers, the solutions of elliptic and hyperbolic equations meet, and previously unknown features arise in the 

displacements that, it seems, should also occur in the solution of the corresponding plane problem. The case of an SPR in the 
upper and lower layers is investigated using a special method for successive allowance for the incident, reflected and refracted 

shock wave fronts. In all cases, expressions are obtained for the displacements in the layers, and their characteristic features are 

investigated. 0 2001 Elsevier Science Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEM 

Consider a two-layer elastic base. The upper layer (1) has a height h, and the lower layer (2) has a height 
H. The lower layer is restrained by the base, and complete adhesion is achieved between the layers. 
We will introduce the coordinate system Oxyz, as shown in Fig. 1, moving in the direction of the x axis 
at a velocity u. We will assume that a point shear load T acts on the base at the point x = 0, y = h, 
referred ‘to unit len th and independent of z. 

Suppose cl = sp Cl/p1 and c2 = m2 are the velocities of propagation of shear waves in the layers, 
where Cl, G2 and pl, p2 are their shear moduii and the densities of the materials. When u c cl and 
u < c2, to solve the problem we will have the equations 

aw. 
@) =G. -_L, 
xz J ax 

When u > cl and u < c2, in the first equation of (1.1) it is necessary to replace y by iv, and when 
u c cl and u > c2 in the second equation of (1.1) we must replace 6 by 6, where 

(1.2) 

When u > cl and u > c2, these replacements in both equations of (1.1) must be carried out 
simultaneously. 

The boundary conditions of the problem have the form 
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Fig. 1 

where 6(x) is the delta function. 

y=-H: wz=o 

y = 0: WI = w2, +I) = T(2) 
YZ YZ 

y=h: yz d’) = 7-6(x) 

(1.3) 

2. THE CASE OF AN SBR IN THE UPPER AND LOWER LAYERS 

Suppose u < cl and u < c2, where both Eqs (1 .l) are equations of elliptic type. We will seek a solution 
of the problem in the form of Fourier integrals [l] 

wj = & j Wj (a, y)eTiwda 

From Eqs (1.1) we have 

w,<a, Y) = A,(a)sh(ayy)+ B,(a)chW~) 

W2(a, y) = A,(a)sh(a6y)+ B2(a)ch(a6y) 

Satisfying boundary conditions (1.3), we find Ai and Bj(a) and obtain 

T 7 *j(Oc* Y) e-icuda w, _ 

’ 27Gy _ aNa) 

A, (a, y) = k sh(ayy)ch (a6H) + sh (aGH)ch (ayy) 

A2(a, y)=sh(aSy)ch(aSH)+sh(aGH)ch(a8y) 

A(a)=kch(ayh)ch(a6H)+sh(ayh)sh(aGH), k=G,GI(G,y) 

(2-l) 

(2.2) 

(2.3) 

We will expand the integrals in (2.3) in residues. It can be shown that the roots of the transcendental 
equation A(a) = 0 in the complex plane z = ayh are single imaginary roots. They are given in Table 1 
for certain values of the parameters k and 1 = GH(yh), where r = 0, 1, . . . 

Denoting by a, = ia, (S = 1,2, . . . ) the roots of the equation A(a) = 0 lying in the upper half-plane, 
we obtain 

m w,=+ ksin(a,yy)coi(a,6H)+ sin(a$H)cos(a,yy) e_0I ,I, 

G,Y s=l @(a,) 

Tt 
w2 = G,y,=, 

sin(a$y)cos(a,6H)+ sin(a,SH)cos(a,Sy) e_o,lXl 

@(a,) 

D(a,)=(kyh+GH)sin(a,yh)cos(a,6H)+(k6H+yh)sin(a,GH)cos(u,yh) 

(2.4) 
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Table 1 
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k I=2 I=1 I = ‘lz 

2 ki(0.6154797 + rv) ki(0.9553166 + m) +i( 1.2309594 + m) 

1 S(Td6 + m) fi(ti4 + m-v) *i(n/3 + w) 

‘12 *i(O.4205343 + m) ki(0.6154797 + 7~) ki(O.8410687 + n.r) 

Since a, - 7c~ when s + m, it is not difficult to establish that the series for w1 converges to a continuous 
function at all 0 G y d h and 1.x 1 < 00, excluding, when y = h, the neighbourhood of the point x = 0, 
where it behaves, apart from a factor, as -In IX I. The series for w2 converges to continuous function 
forall-HsysOand 1x1 ~00. 

3. THE CASE OF AN SPR IN THE UPPER LAYER AND AN SBR IN THE 
LOWER LAYER 

Suppose u > cl and u c c2, where Eqs (1.1) are equations of hyperbolic and elliptic type respectively. 
In formulae (2.3) it is necessary to replace y by ip, and k by ml , where m = G26/(Gly*). As a result 
we will have 

A (a. Y) 
w. =--.-L--j -e 
’ 2nC,y, ,- aNa) 

_iarda 

(3.1) 

A, (a, y) = msin(ay,y)ch(aGH)+ sh(a&Y)cos(ay,y) 

A2(a, y) = sh(aliy)ch(aGH)+sh(abH)ch(a6y) 

A(a) = mcos(ay,h)ch(aGH)- sin(ay,h)sh(abH) 

We will expand the integral in (3.1) in residues. It can be shown that the transcendental equation 
A(a) = 0 in the complex plane z = ayJz will now have single roots that are both imaginary and real. 
They are presented in Table 2 (the imaginary roots) and in Table 3 (the real roots) for certain values 
of the parameters m and n = GH/(y.h), where r = 0, 1, . . . The integration contour I in (3.1) will be 
selected so that it proceeds along the real axis, bypassing the real poles from above when x < 0 and 
from below whenx > 0. 

Denoting by cl, = ia, (S = 1, 2, . . .) the imaginary roots lying in the upper half-plane, and by 
0, (s = 1, 2, . . .) th e real roots in the right-hand half-plane, we obtain 

Table 2 

Fn n=2 n=l n = ‘12 

2 &i(O.9639096+ 7~12) ki(2.0205285 + m) ki(4.0684198 + 2~) 

1 ki(1.1256602 + w/2) ki(2.3470456 + m) ki(4.7122275 + 21~) 

‘I2 ki(1.3084609 + rv/2) ki(2.6741290 + XT) ki(5.3558443 + 27~) 

Table 3 

k n=2 n=l n = ‘12 

2 k(1.1162877 + IV) k(1.1786902 + I-@ k(1.2934123 + IV) 

1 z(O.8226173 + nr) k(O.9375520 + rv) ~(1.1051875 + nr) 

‘I2 k(0.5559512 + rv) k(0.6941913 + nr) k(O.8797559 + Iv) 
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m sh(a,y,y)cos(a,W + sMa,~WcW,y,y) e-Bs M_ 

a,W,) 

-2 P,D*<P,) s 
m *lcpS’ ‘) sin@ )x I) 

1 

‘TX 
{ 

OD 

w2 G,y* s=l 

sin(a,Sy)cos(a,W + sin(a,W cos(a,6y) e-al IxI _ 

@4a,) 
(3.2) 

-2 P,DeCP,) ’ 
m A2(Ps’ ‘) sin@ 1 X I) 

D(u,) = -(my*h + GH)sh(a,y,h)cos(u,8H)+ (m6H - y*h)ch(a,y,h)sin(a,SH) 

D,@,) = -(my,h + GH)sin(P,y,h)ch(P,GH)+ (m6H - y,h)cos(P,y,h)sh(P,6H) 

Since a, -m/n ass -+ 03, it is not difficult to show that the first series in the expression for wl converges 
to a continuous function for all 0 c y s h and IX] c 00, with the exception, when y = h, of the 
neighbourhood of the point x = 0, where it behaves, apart from a factor, as -In Ix I. With regard to 
the second series in wl, taking into account that p, - zr when s --+ 00, it can shown that its principal part 
comprises the function 

2~m,,I_y~h)jm[ln/2cos(~]-In/Zcos(~]]+ 

+t-+t;-4r} (t*zt(~*y)) 
(3.3) 

where r = 0, 1, . . . , and -1 c t_ < 1 and 0 c t, < 1 when r = 0, and (2r - 1) c t, < (2r + 1) when 
r 3 1. Thus, the second series in w1 has discontinuities of the first kind of the sgn type and discontinuities 
of the second kind of the logarithmic type on the lines 

Jx(=+y,y+(2rTI)y,h (r=O,l,..., O<y<h) 

Wheny = h, the principal part of the second series in wt comprises the function 

(3.4) 

t-2r-I 

2(mSH - y,h) 

where r = 0, 1, . . . and 2r < t < 2r + 2, and when y = 0 it comprises the function 

t-2r 

2(m6H - y,h) 

(3.5) 

(3.6) 

where r = 0, 1, . . . , andhereOct<lwhenr=O,and2r-l<t<2r+lwhenral.Thus,when 

Y = h; the second series in w1 has discontinuities of the first kind of the sgn type at the points 
1x1 = (2r + 2)ph (r = 0, 1, . . . ) and a break at the point x = 0, and when y = 0 it has discontinuities 
of the first kind of the sgn type at the points 1x1 = (2r + 1)yth (r = 0, 1, . . .) and a break at the point 
x = 0. Discontinuities of the second kind of the logarithmic type in w1 do not reach the surfacesy = h 
andy = 0. 

Results (3.3)-(3.6) can be arrived at on the basis of the relationships in [2, (1.441 (1, 3,4))]. 
The first series in the expression for w2 converges to a continuous function for all -H G y c 0 and 

IX I < 00. The second series in w2 converges to a continuous function at all -H s y < 0 and )X I < 0”; 
wheny = 0 it chiefly comprises the function (3.6), i.e. it obviously behaves in the same way as the second 
series in w1 when y = 0. 

. 
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4. THE CASE OF AN SBR IN THE UPPER LAYER AND 
AN SPR IN THE LOWER LAYER 

Suppose u < cl and 2) > c2, where Eqs (1.1) are equations of elliptic and hyperbolic type respectively. 
In formulae (2.3) it is necessary to replace 6 by 3. and k by -pi-‘, where p = G2&/(GIy). As a result 
we will have 

‘Tj Aj (a, Y 1 e_imda 

wi 2xG,y r aA 

A,(a,y)=psh(ayy)cos(aS,H)+sin(ab,H)ch(ayy) 

A,(a, y) = sin (a~,y)cos(a~,H)+sin(016,H)cos(cr6,y) 

A(a)=pch(ay~)cos(a6,ff)+sh(ayh)sin(C&H) 

We expand the integrals in (4.1) in residues. It can be shown that the transcendental equation 
A(a) = 0 in the complex plane z = ayh will again have single roots that are both imaginary and real. 
They are presented in Table 3 (the imaginary roots, m = p, n = q, before all values it is necessary to 
add the square root of -1, i) and in Table 2 (the real roots, m = p, n = q, before all values it is necessary 
to remove the square root of -1, i.e. i) for certain values of the parameters p and q = &H/(yh), where 
r=O,l,... We will again select the contour of integration I in (4.1) so that it proceeds along the real 
axis, bypassing the real poles from above whenx < 0 and from below whenx > 0. 

Denoting by a, = ia, (s = 1, 2, . . .) the real roots lying in the upper half-plane, and by 
i3, (s = 1,2, . . .) the real roots in the right-hand half-plane, as above, we obtain 

psin(a,yy)ch (u&W) + sh (a,&Wcos(~,~) e-4s IA _ 

a,Wu,) 

- A,(@,,Y) . 
-5, psD*(&,S’n’Ps IxD (4.2) 

sh (a,G,y)ch(u,G,H)+ sh (u,&Wch (u,b) e-o,~x~ _ 

u,D(u,) 

oD A~(&.Y) . 
-s:, p,D*(p,) s’n(Ps ’ x ‘) 

D(u,) = (pyh + 6,H)sin(a,yh)ch(uJi.H) -(p6,H - yh)cos(u,yh)sh(a,b,H) 

De@,) = (pyh + S,H)sh(p,yh)cos(p,s,H) - (p&H - yh)ch(P,yh)sin(P,s,H) 

Since a, - ~T.Y when s + m, it is not difficult to establish that the first series in the expression for w1 
converges to a continuous function for all 0 s y c h and IX 1 c 00, with the exception of the neighbourhood 
of the point x = 0, where it behaves, apart from a factor, as -In IX I. As regards the second series in 
wl, taking account of the fact that l3, - m/q when s + 00, it can be shown that for all 0 s y c h and IX I 
< 00 it converges to a continuous function. Wheny = h, this series chiefly comprises the function (3.5), 
where now t = rc(x~/(&H). Thus, whey y = h, the seocnd series in w1 has discontinuities of the first 
kind of the sgn type at the points IX 1 = (2 + 2)&H(r = 0, 1, . . .) and a break at the point x = 0. 

It is interesting to note that, for the two different cases (u > cl, u < c2 and u < cl, u > cz), the 
behaviour of wi wheny = h is the same. 

The first and second series in the expression for w2 converge to continuous functions for all 
-Hsy<Oand 1x1 cm. 

5. THE CASE OF AN SPR IN THE UPPER AND LOWER LAYERS 

Suppose v > cl and u > c2, where both Eqs (1.1) are equations of hyperbolic type. We will present the 
solution of Eqs (1.1) with y = iv and 6 = i&, in the d’Alembert form 

WI =fi(x-YY,Y)+g,(x+Y*Y). w2 =fi(X-&Y)+g2(X+&Y) (5.1) 
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To determine the functions occurring in (5.1), we will use the method [3] of successive calculation 
for motion along the x axis in the negative direction from x = 0 of the incident, reflected and refracted 
shock wavefronts, employing a linear combination of the discontinuous function 

l-l(x) = 1 0 (x>O) 

-I (X-CO) V-2) 

of different arguments. Note that, in this case, account is taken of the fact that there is no motion of 
points in the two-layer base whenx > 0. 

Further, without loss of generality in the reasoning, for simplicity we will assume that h = H. 
Suppose cl > c2; then the angle of refraction of the shock wavefronts in the lower layer will be greater 

than their angle of incidence in the upper layer (Fig. 2), and whenx > -4y*h the functionsfI,f2, gr and 
g2 in (5.1) must be taken in the form 

J (x - Y*y) = A,Wx - Y.(Y - h)l+ +Xx - Y~(Y - 3h)l 

g,(x+Y*Y)=W-frx+Y*(Y+~)1+B,~[x+Y*(Y+3~)1 

f*~X-~*y~=c,ncx-6*y+y,h~+C,n(x-6*y+3y*h~ (5.3) 

g2(x + Ly) = QWx + S*(y + 2h)+ y*hl 

Assuming that 3yJ2 c 6. < 2yt, and then determining the coefficientsAr,A2, B,, B2, Cr, C2 and Dr in 
(5.3) from boundary conditions (1.3), the last of which can be written in the form 

Y*G,l-fi(x-Yy.h)+gl(x+Ylh)l= m(x) (5.4) 

we finally obtain 

T 
WI =-- 

C,Y* i 
rl[x-Y*(y-h)l+~ n[x - Y.(Y - %)I + 

1 

l-k, 
+~+kx+Y*(Y+h)l+ 

I 

(5.5) 

20 -k,) +--l-I(x-6.y+3ywh)} (ke =$) 
(1 +k)* 

Now suppose cl < c 2; then the angle of refraction of the shock wave fronts in the lower layer is less 
than their angle of incidence in the upper layer (Fig. 3), and when x > -3y.h the functionsft and g2 in 
(5.1) must be taken in the form (5.3), while the functionsgl andf2 must be taken in the form 

Fig. 2 
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Fig. 3 

gj(x+Y*Y)= ~,~i~+r*cY+~~l+~,~~~+Y*~Y+~~+~~,~l (5.6) 

fi(X-&y)=C,n(x-s *Y + y*h)+ c*nrx - 6*(Y - 2h)+ y*hl 

Assuming that p > 6. > 2y43, and then determining from boundary conditions (1.3) the coefficients 
Ai, AZ, Bi, BZ, Cl, C2 and Di, we will find, for w1 and w2, relations that differ from (5.5) by having the 
final term in brackets replaced respectively by 

4k, --rI[x+y*(y+h)+26,hl, 
(1 +U* 

2(1-k,) l-I[x - 6.(y - 2h) + y*h] 
(1 +M2 (5.7) 

In conclusion, we note that, in all cases of the relation of u to cl and 9, the change to an examination 
of the antiplane problem of the motion over a two-layer base of a shear load distributed alongx is obvious 
in view of the superposition principle. In this case, all the discontinuities in the displacements will 
disappear, but similar discontinuities will remain in the stresses, including infinite discontinuities of the 
logarithmic type in the case when u > cl and u c c2 inside the upper layer. This fact is of interest from 
the viewpoint of seismology problems. 
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